The Visual Model of Cordial’

Luis O. Quesada, Camilo Rueda, Gabriel Tamura
{lquesada, crueda, gtamura}@atlas.ujavcali.edu.co

Universidad Javeriana de Cali

ABSTRACT

We describe the visual model of Cordial, a visual language integrating Object-Oriented and Constraint
programming. The motivation behind Cordial is to provide a clear notion of objects defined implicitly by
means of constraints. Cordial is a visual language having three distinguished features: (1) A hierarchical visual
model, (2) an underlined visual formalism giving precise syntax and static semantics of visual programs and (3)
a dynamic semantic model based on a formal calculus intcgrating objects and constraints. The visual model
consists of a hierarchy of layers of visual representations of object oriented concepts in which icons can be
“expanded” upto the underlined visual formalism, an extension of Harel’s Higraphs (Harel[89]). We present
here the visual model, provide its formal translation into Higraphs, and describe the visual syntax and
semantics of Cordial.

Keywords: Visual language, Cordial, constraint programming, object oriented programming, visual formalism,
iconic programming.

Introduction.

Research in visual languages has known increasing activity in the last years. A variety of successful visual languages
both general purpose and application specific have been defined recently. The range of visual models employed could
be loosely characterized as based on actions over icons [HTI90], graph representation of control [Sco95], spreadshect
based [BA94], based on spatial relations [NK91], based on topological relations [K.S90] and programming by
dernonstration (Hitbscher[96]). Cordial is a visual language having three distinguished features: (1) A hierarchical
visual model, (2) an underlined visual formalism [Har88] giving precise syntax and static semantics of visual
programas and (3) a dynamic sernantic model based on a formal calculus integrating object-oriented and consirains
programming paradigms. The motivation for the design of Cordial is to provide an effective way to represent
visually the computation of partially defined structures. These are very useful in applications such as musical
composition where the notion of classes of objects obeying precisely defined rules is central. Indeed, although
Cordial is a general purpose language, its principal aim is to provide a coherent base to develop computer aided
musical composition systems. This domain is particularly demanding in at least three aspects of computation, easy
program interaction with visual representations of data (musical scores), implicit definition of complex structures by
sets of simple rules, and powerful operations for data structures transformation. Cordial is visual to address the first
issue, constraint-based to address the second and object-oriented to provide for the third. The development of
Cordial is a joint effort of researchers in three Colombian universities and in IRCAM, a musical research center in
Paris, forming a research group called AVISPA. In this report we describe only the visual model of Cordicl.. The
underlined semantic model for the integration of constraints and objects is given elsewhere [VDR97]. The paper is
organized as follows. In section 2 we define the basic elements in the visual modcl and place it in the context of
existent visual languages. Section 3 pinpoints visual features of Cordial by discussing a programming example.
Section 4 extends the Higraph [Har88] formalism and describes how any visual program in Cordial can be
translated into it. Finally, in section 5 we give some conclusions and propose future works.

' This work is supported in part by grant 1251-14-041-95 from Colciencias-BID.
643

The Visual Model

The visual model of Cordial inherits ideas of both Prograph and Piciorial Janus. However, it deparis from them in
several important aspects. Prograph is based on the Object Oriented paradigm. Visually, Classes are represented as
templates containing boxes for defining atributes . Methods of a class are defined externally by a contour containing
a graph representing the flow of control of method invocations in the body of the method's definition. Insfances are
thus not explicitly represented. They exist implicitly as the result of invocations to a predefined make method.
Methods defined this way are more akin to the notion of generic functions, In Cordial, instances are represented
explicitly by means of a user defined form. Methods are defined by a layout of forms defining a pattern of messages
sent to instances. In Prograph the visual elements are fixed. In Cordial, the user can associate new forms (o
language elements. Pictorial Janus, on the other hand, is based on the concurrent constraint programming paradigm
[Sar93]. Closed contours define rules. These rules contain (and are activated by) agents represented also by closed
contours, Both rules and agents may contain ports, which are small contours defining input and output "sockets" for
interaction. Agents select subcontours inside rules by a process of visual pattern matching linking agents to inputs
of the rule. The result of this visual pattern matching is a reduction of the agent (and rule) to the selected subcontour.
Much like in Pictorial Janus, closed contours in Cordial are used to define relations. However, the graphical
elements in both languages are quite different since the architecture of the visual model in Cordia! reflects the object-
oriented paradigm. Syntactically, a program in Cordial is a layout of forms on the screen. The visual vocabulary
includes closed contours, icons, labels, line segments and arrows. These are used to represent different elements of a
program and its execution. The underlined semantic model of Cordial is based on an integration of objects and
constraints. User defined icons or forms are used to represent objects whereas line segments or arrows touching
icons define relations. Cordial allows different layers of visnal representations for a program. Each form in the
program has an interpretation (or expanded view) in a lower layer. The ultimate layer achieved by expansions is the
representation of the program elements in Higraphs, the underlined visual formalism,

The notion of a program in Cordial includes all the forms together with the functions associating them with their
expanded views . In what follows we assume a given set F of forms and a set H of views, F = F- UF, UF_UFE,,
and H=H-UH UH_UH, where F. F F_,F (respectively, H. H; H_,H,) are sets of forms (views) for
Classes, instances, methods, and instance representatives, respectively. Forms are thus visual representations of the
well known concepts of OO programming, where Insiance represeniatives could take the role of local variables in
methods. Although this straightforward association can be useful at the beginning, we will have to depart from it in
subtle but important ways when we precise the notion of method as 2 relation. Let I. :Fo — Hg, I;:F — H,
I,:F, —H_, 1.:H_ xF — H_, be functions mapping forms with expanded views in the underlined visual
formalism (note that instance representatives are expanded within the context of the expanded view of a method in
which they appear). Programs in Cordial are essentially a collection of forms defining classes. More precisely,

Definition 2-1

A Program P = <FC,1C7m> comprises a sct F-of forms for classes, a function I mapping them to expanded
views, and 2 message m. The message “triggers” a method invocation, A Class C = (F,»(C),Fm(C),Im(C)) isa
collection of instance forms, method forms and a mapping of method forms into their expanded views. €

Every instance form o €F(C)is unique. That is, for all classes C.Cj (k=j), we have F(C)NF(C))=J. A

given method form may appear in different classes. Class, method and instance forms can be seen as labels referring
to an expanded definition in the visual formalism. Figure 2-1 gives an example of the definition of two classes,
“SUNS” and “WEATHERS”.

644

temperatire: :J

homidity:

WEATHERS

Instances Methods

Figure 2-1 (left) Visual definition of two classes. (right) A method with two guarded subsets

Instance forms represent unique object identifiers (they exist, of course, only at program execution). Instance
representatives, appearing in methods, are forms defined by the user to represent an element of the set of instances of
a class. The particular form of an instance representative should bear resemblance with the form of the class of the
instance. This is shown in Figure 2-1 by using the same form of the class with different background colors. A

¥

method form represents a set of messages. This set is made visible by the mapping [_. The set of messages can be
partitioned into disjoint subsets, identified by closed contours inside a single contour. Message subsets are
interpreted as concurrent computational paths in the underlined semantic model. Each subset is usually guarded.
Guards are used to select the appropriate computational path. Figure 2-1 shows an example of guarded message
subsets. Guards appear in the upper part of the subset. A "wind blowing" message is sent to a "sun" instance
representative (the receptor of a message is indicated by a thick line). The message has two arguments, so "wind
blowing" defines a terpary relation. Forms in the guards ("dark cloud" and “partially sunny") are alternative
arguments tested for membership to the relation. We approach next the notion of computation in the visual model of
Cordial.

Definition 2-2

Let functions Ins: F, — 2%, Classof : F, — F,. be such that Ins(f_)is the set of all possible instances in class
C and Classof(f)is the class of instance representative f, . Let frf"‘), f,(zm),..., frf‘m) be the instance
representative forms appearing in a method m. The computational space of a method m in a program P ise
definedas MCS,(m) = x Ins(Claasof(f('“))) The computational space of a method is thus the product of all

I<i<n
sets of instances represented by forms appearing in it. Each method m defines a method solution space.
MSSp (m) € MCS; (m), which is a refinement of its computational space. &

The execution of a program in Cordial proceeds by message passing to instance representatives in the expanded view
of a method. The visual program of the method triggered by the message is then run, thus possibly generating new

645

messages. There is no predetermined order in which messages of 2 method are taken into account. A message
denotes a relation, Instance representatives forms involved in the message are “refined” so that the number of
instances they can represent is reduced to those satisfying the relation. Each step in this process is called a
configuration. Going from one configuration to another is determined by a binary relation R on configurations
defiped in the underlined semantic model. More precisely,

Definition 2-3

A configuration is a pair (M,s), for M a set of messages and s a state. A message tEM is a tuple
(f,.5.5,,...1,), where f €F_, and f; €F,,l sisn, are forms of instance representatives. Form f; is
assumed to be the receptor of the message. All other forms are its arguments. A sfafe is a pair s = Env x Store,
where Env = (®,¢),and Store =(S,,S,). ®:F, xF, — H expands methods (associated with the class of an

instance representative), £:F. — F maps a representative into a particular instance, S, : F, — 2"*"maps

instance forms to sets of values defined in the underlined semantic model (called “Partial instances”, or PINS),
and Sy : H,, — Rels(2V™*)maps expanded methods to sets of relations over PINS if the underlined semantic

model. We say that configuration (M,s)reduces to configuration (M',s")iff ((M,s),(M’,s')) ER . &

We leave to section 4 the definition of functions I.,I,.I;,I, mapping forms to expanded views in the underlined
visual formalism of Higraphs. We use these translations to specify formally the visual syntax and semantics of a
program in Cordial. In the next section we give a general view of visual programming in Cordial through the
discussion of short examples. In so doing we choose for simplicity an intermediate visual layer restricting somewhat
the variety of forms to represent entities of a program.

3. Visual programming in Cordial

We give in this section a general outlook of the visual components of a program in Cordial. Here we only discuss
the use of basic visual elements in Cordial with the aim of providing a general flavor of what visual programming
means in the context of this language. A more complete description can be found in [QRTS97]. As was mentioned
above, the basic elements of a program in Cordial are those of OO programming, such as classes, objects, and
methods (understood as rclations). A program is a set of classes. Its execution begins with the invocation of a
method in one of these classes. As usual, the definition of a class includes the specification of a set of methods.
Figure 3-1.a shows the class complex number and its expanded view (a "double click" action is always associated
with mapping a form to its expanded view). Attributes and methods (formally indistinguishable) are represented by
boxes containing a signature.

[eome O] o Comp

Instance/ Class

Altributes Methods

@ IC norm 1
= real: I_Baa.L_l ICorrwxPeal I

img:l Rea I F_____I
omp x Comp xComp

Figure 3-1.a Expanded view of Class Figure 3-1.b Expanded view of object

Signatures of methods are Cartesian products since they are interpreted as relations. Objects are represented much the
same way as classes (see Figure 3-1.b). Visually they are distinguished from their class by a double line contour.
Their expanded view shows only the current values (if any) of attributes. Bear in mind, though, that instance
representatives relate to sets of objects refined monotonically by constraints, so the notion of a value for an attribute
component is not, formally, well defined. The expanded view of 2 method is represented by a contour labeled with
the name (or form) of the method and its class name (or form). A method body (see Figure 3-2) contains instance

646

representative forms and method forms. lnstance representative forms linked by a line to the method's contour
represent parameters. A line labeled self identifies, as usual, the receptor of the message triggering the method defined
by the contour. The ternary method sum in Figure 3-2 constraints an instance of a complex (say the one linked to the
contour by a line labeled “2”) to be the sum of two other complex numbers. The invocation of this method does not
necessarily assume that all values for the attributes of the instances involved should be uniquely defined. The
particular relation associated with the method is interpreted in the underlined semantic model which may impose
restrictions on the set of values for instances in a method invocation. Double lines identify that instance
representative form receiving

| sum@Complex |

self
-+
e
s ——
i fmg
Img
_/
1 2

Figure 3-2. Addition of two complex numbers

the message. As mentioned before, methods may contain conditional computational paths (Figure 3-3).

self] v.init
Co FComp
In \

accu m@Col-Comp J

M ain

nil

Figure 3-3. (2) Conditionals. (b) Implicit ask in method invocation

Conditionals are represented by two or more contours inside another contour, as shown in Figure 3-3(2). The
semantics of conditionals is related to the notion of 4sk agents in the concurrent constraint programming paradigm
[Sar93]. Figure 3-3(a) depicts a method that implements a reduction operation on a collection of objects. The
method uses an operation (addition, in this case) and a given initial value to accumulate the elements of a collection
of complex numbers. The guards in the conditional ask for a particular form (cither nil or composite head-tail) of
the argument self (the collection) to be deduced from the information implicit in all relations that have been
imposed. The guards represent the predicates Object(self) = nil and 3, | Object(self) = cons(hd,tl). Methods

647

below the straight-line in a subcontour of a conditional are considered only if the deduction of the guard succeeds.
The body of the right subcontour contains a recursive invocation of the method, indicated by a thick arrow pointing

to the external contour. Instance representatives does not always have to be explicitly defined. In Figure 3-3(2) the

third argument to the recursive invocation (labeled accum) is not drawn but is the implicit receptor of the message
sum. Lines connecting arguments of mail Boxes (i.e. method invocations) to contours containing them represent
mutually exclusive alternatives for the line marked “Out” in the figure. Labels in lines serve to order the arguments
in a method invocation.

As was mentioned before, Cordial is a concurrent language. There is no implicit ordering in method invocations
since messages define constraints on the arguments. In certain situations the need might arise to force an explicit
ordering. Figure 3-3(b) shows a method main invoking two Fahrenheit-to-Celsius conversion (fahr) methods.
Arrows instead of lines in messages implement an implicit-ask (Smolka[]) operation over the instance representative
form linked to the tail of the arrow. Before a method is invoked (display in Figure 3-4), it should be deducible that
all constraints imposed on the form have reduced the set of instances it represents to a singleton set (i.e. the form
represents a unique value). In this way, the upper display method in Figure 3-4 effectively “waits” until the
conversion from 37 degrees Fahrenheit to Celsius has completed. Assignment is considered a relation, much like in
[Smo94]. The use of arrows to represent implicit-ask operations in Cordial is really an abbreviation. The same
effect could be achieved using conditionals. In
|C-Ambius|

/" Autb
== - methods
Note % ZE :pair J
L in Ambiws:Chord
Auib Mahods \\
% (pitch):Int :

(dur):Tnt

Autrib

Methods \

I “Imt X Chord

M;F'Noles: Note List

i
Chord § %
%I JInt ¥ Chord

—lntv : Chord X Int List

£
%

Figure 3-4. Representation of inheritance.

Figures 3-4 and 3-5 we show a somewhat more elaborate example. Three classes are defined, Note, Chord and C-
ambitus. The latter inherits from Chord as is shown by the down pointing arrow. Methods are identified by icons.
The piano player, for example, represents the method capable of playing an object. A chord contains a list of notes.
C-ambitus is a chord for which every note must be in a given pitch register, that is, its pitch must be less than and
greater than two given integers (the elemeants of the pair (X,Y) in figure 3-5). Method nambitus establishes the
constraint that insures this is so. It invokes a method of the same name for the class Lis? which uses a recursive call
within a conditional to set constraints “>=" and “<=" for the pitch of each note in the list. In the next section we
describe the translation of Cordial programs into the underlined visual formalism.

4. Interpreting forms in Higraphs

Giving formal syntax and semantics to visual programs is an active research topic. Different extensions of the
traditional grammatical formalisms for linear Janguages have been proposed, leading to a variety of new types of
grammars, notably graph [RS95], relational [CGNTT91] and constraint multiset [Mar94]. General rewrite systems
has also been tried as in [NK91].

6438

.
2

LisinAmbitus

S

| elf
LN
'S

\ EE-Amb:lnambims I

= e 12
DI ey -

_ S~)

Figure 3-5 Implementation of the ambitus constraint

A hierarchical classification of syntax formalisms for visual languages can be found in [Mey91]. A logical approach
to specification of syntax and semantics has been proposed recently, and its convenience evaluated in the definition of
Pictorial Janus [Haa%6], [GC96]. We follow a different path. In our view, the syntax of Cordial is formed out of
graphical elements built on a layer above Higraphs. This layer should be high enough to allow ease of programming
but also low enough to be directly translatable to it. In this way syntax and static semantics of Cordial programs are
expressed by this translation. Higraphs provide a clearly defined visual formalism useful in a variety of applications.
It derives its expressive power from an integration of two well known mathematical formalisms, Venn diagrams and
graphs. The integration can neatly express structural composition of entities (via set theoretic operations) as well as
relations. Sets are represented by closed contours (called blobs). A dashed line partitioning a blob defines a Cartesian
product. Relations are depicted by arrows or lines linking blobs together. Relations can be labeled inside a
diamond. Thus Higraphs represent graphs whose nodes can have structure. Figure 4-1 represents sets
X Y,A,B,C,D,EF satisfying YEFC X, DCE, Y=(AUB)x(CUD) (in Higraphs product is unordered) and
relation RC CxF . We give formal visual syntax and semantics to Cordial by defining a translation of a
program into a Higraph. We will do this by a composition of expansions in which method forms are first expanded
into its associated contour and this contour together with the forms contained in it then (recursively) expanded into a
Higraph. In Figure 4-2 method form m is expanded into a contour showing two method forms m,, m, and four
instance representatives ir,, ir,, ir;, ir,. Method m can be further expanded into a Higraph as shown in Figure 4-2.
Blobs b,, b, are sets of instances satisfying the constraints imposed by messages involving m,, m, in Figure 4-2.
More precisely,

Figure 4-1 A Higraph

649

Figure 4-2 Method expansion

Definition 4-1

Let M, be a method form appearing within the contour of the expanded view of method M. Let
f(M) f(M) €1, (M), f(M) f(M‘ €1,,(M,) be the instance representatives appearing in the expanded views

of M and M,, respectively. Let A.{1,2, gy —{,2,---,p} be an index mapping function such that A(j)=1i
just when féM‘) is linked to argument frfM) in the invocation of method M, within the expanded view of M.

Given a program P, the blob set iranslation of M, in M is defined as
BST, (M, A) =

{(z],xz,u,xp)’l(x,,n-,x)eMCSP(M)A(ayh_,,_yq L(H1 2 Yg) EMSSp (M) A (Y jepomeay * Xags) = yj))}
&

Translation of a method form in a message into a blob thus entails two operations: first mapping the arguments of
the message to instance representatives within the expanded view of the method, and then using the method’s
solution space to refine the computational space of the expanded view in which the method appears. The following is
an example of this process.

Example. In Figure 4-2, let MSS, (M) ={(f.f, &, 6).(5. 6. 5. 6)) A={123).(2,1),(3,4);. Then
BST,, (M, A) = {(f;,x, f,, £, U{(f,,x, f,, f;)},.for all x Elns(Classof (£3°))}.

Higraphs can represent set containment but not set membership. In the next section we extend Higraphs by giving
a visual representation to unitary sets. Since methods are translated into blobs (i.e. sets) we define rules for
constructing its elements (i.e. the tuples in MSS, (M)). In section 4-1 we define precisely an interpretation function

v mapping methods to elements in its solution space. This allows us to fully translate Cordial programs into the
visual formalism.

4-1. Semantics of Cordial in Higraphs.

As was mentioned previously, a program in Cordial is a set of class forms and a message (method invocation). Each
form is mapped by I- into an expanded view (see section 2) comprising a sct of instances and a set of method forms.
The set of instances (a blob, thus) is not further treated here since it is assumed to be interpreted as a set of values in
the underlined semantic model. The set of method forms is defined by first expanding each method with I and then
translating the result into a Higraph. The translation into the underlined visual formalism can thus be seen as the
composition of two functions ve I, one expanding the appropriate form (class or method) and the other translating
the result into a Higraph. Class blobs thus contain singleton sets of method blobs and method blobs contain blob
set translations (see definition 4-1) of messages appearing in them. The specific elements in all these blobs are given
by the recursively defined function v. Blob set iransiations of primitive messages are computed in the underlined
semantic model. We begin by extending the original definition of a Higraph [Har88] to include the different types of
blobs in Cordial.

A problem with the standard definition of Higraphs is that membelshlp relations cannot be represented. We extend
Hzg aphs by adding singleton sets represented as atomic blobs (i.c. those not containing sub blobs). We depict
atomic blobs by closed contours with double lines labeled with the form representing their unique element (see figure
4-3).

650

(e A

S 2

Figure 4-3. A unitary blob.

Definition 4-2
A Higraph H ={B,,B,,B,.B,,B, B, v} comprises unitary blobs (B,), blobs for classes (B,), method body
(By), disjunctions (conditionals, B,), clauses (B,), and messages. (B,). s is the sub-blob function mapping

each blob to the set of its subsets. o {B,,B,,8,,B, B, }— 2By Ba BBl g

A model for H is a pair M = (CS,v)where CS (computational space) is the set of tuples representing all possible
values for each instance representative and v : {B,,B,,B,,B, B, } — 2° maps blobs to sets of values. v is defined
recursively as follows:

0.If x€B,, v(x) =v(y), where y Ex

LIfx EB,, v(x) = |J{&,(y)}
y&x

u(y) if yEBy
v(I,,(y)) otherwise

2.If xEB,, 1(x)= ﬂp(y), where p(y) = {
yEX

3.If xEB,, v(x) = (v(y)

yEX

(%), i U(%,)2S
4. If xEB,, V(X>={ls, ’ if v(x:)cs’

where x,, x;, are the guard and body , respectively, of the clause and
(\
S= k ﬂv(z)) N MCS(M) , where by is the blob of the method M in which the clause x is defined.

2&b), ,2= X
V C CS,if primitive(x)

5.if xEBy, v(x)={ [BST(y,A)
yel (%)

Function v thus defines sets of tuples of instances that can potentially belong to the relations defined by methods. In
the dynamic semantic model, a particular sequence of method invocations define refinements of these sets. The
interpretation is defined recursively in the structure of a visual program. A class blob is thus interpreted as the set
containing each interpretation of the method forms appearing in the class. A method body blob (i.e. the result of
applying /,, to a method form) is interpreted as the intersection of the sets in the interpretations of all forms (messages
or conditionals) appearing in it. Disjunctions (i.e. conditionals) are also interpreted as intersections of the sets
interpreting all clauses in the disjunction. The interpretation of a clause form (i.e. each alternative in a disjunction) is
essentially a set theoretic definition of the Ask operation in concurrent constraint Janguages: the interpretation
depends on whether the guard is or is not deducible from information provided by other messages in the same
method (this is the role of S). Finally, interpretation of message forms (mailboxes in the examples) is either given by
the underlined semantic model or computed as the intersection of blob set translations of forms in the expanded
view of the method invoked by the message.

5. Conclusions and future work.

We have introduced Cordial, a visual language integrating OO and constraint programming. We characterized its
visual model as a hicrarchy of graphical layers where icons representing classes, methods and instances can be
expanded to show their components. We argued that this feature allows the program’s appearance to be tailored to fit
different types of users. Choosing an intermediate layer we illustrated programming in Cordial as message passing
between objects, interpreted as relations. We argued that the semantics given to arrows in Cordial completed the
representation of Ask and Tell operations of CCP languages. Finally, we gave a set theoretic static semantics of

651

visual programs by a formal translation into an extension of the Higraph formalism. This translation defines
methods as blobs containing tuples of instances defined by set theoretic operations over values defined in an
underlined semantic model. Cordial is part of a project aimed at defining powerful tools for musical composition, It
inherits from ideas in Patchwork and Niobé [Rue94]. An implementation of the visual model in JAVA is currently
under way. The strategy for constructing a semantic model is to define a concurrent calculus integrating objects and
constraints. An extension with constraints (but not objects) is given in [VDR97]. Adding objects to this calculus,
constructing from ideas in Tyco [Vas94] is under way. We are currently working on more declarative syntax
specification of Cordial using descriptive logic [Haa96]. We plan to test the usability of the language by
constructing a musical orchestration system in the near future.

6. References

[BA%4] M. Burnett and A. Ambler. Interactive Visual Data Abstraction in a Declarative Visual
Programming Language. Journal of Visual Lang. and Comp. 5(1), March 1994, 29-60.

[CGNTTI1] C. Crimi, A. Guercio, G. Nota, G. Pacini, G. Tortora, M. Tucci. Relation grammars and their
application to multi-dimensional languages. JVLC, vol.2, n.4, pp.333-346, 1991.

[GC96] J. M. Gooday and A. G. Cohn .Visual Language Syntex and Semantics: A Spatial Logic
Approach . Proc. of the Internat. Workshop on Theory of Visual Lang., Italy, May 1996.

[Ha296] V. Haarslev . A Fully Formalized Theory for Describing Visual Notations. 1996

[Har88] D. Harel. On Visual Formalisms. In C4CM VL 31, May 1988, pages 514-530.

[HM9%4] M. Henz and M. Miiller. Programming in Oz. . In: DFKI Docwmnentation series, 19%4.

[HTISO0] M. Hirawaka, M. Tanaka, and T. Ichiwaka. An Iconic Programming §ystem: Hi-Visual. JEEE
Trans. Sofiware Eng. Oct 1990, pp. 71-80

[Hiib96] Hiibscher, Roland, Composing Complex Behavior from Simple Visual Descriptions. In 7996
IEEE Symposium on Visual Languages, Boulder,CO, Sept. 1996. pp. 88-94.

[KS90] M. K. Kahn and V. A. Saraswat. Complete Visualizationn of Concurrent Programs and their
Executions. In 71990 IEEE Workshop on Visual Languages, pages 7-15

[Mar94] K. Marriot. Constraint multiset grammars. In /EEE Symposium on Vis. Languages, 1994.

[Mey91] B. A. Meyer. Taxonomies of visual programming and programming visualizations, /EEE
Workshop on Visual Languages, pp 56-61, 1991,

[NK91] M. Najork and S. Kaplan. The Cube Language. In 1991 IEEE Workshop on Vis. Lang., pp. 215-
220.

[QRT97] L. Quesada, C. Rueda, G. Tamura. Programacion Visual en Cordial. ReporteTécnico AV-97-03,
Grupo AVISPA, Universidad javeriana de Cali, 1997.

[RS95] M. Rekers and A. Schiirr. A Graph Grammar Approach to Graphical Parsing. In VL'95. pp. 195--
202.

[Ruc4] C. Rueda. A Visual Programming Enviroment for Constraint-Based Musical Composition.
Proceedings, XIV Congresso da Sociedade Brasileira de Computacao. Caxambu, Brasil, 1994.

[Sar93] V. A. Saraswat, Concurrent Constraint Programming. MIT Press, Cambr. MA, 1993

[SS94] C. Schulte and G. Smolka. Encapsulated search and constraint programming in Oz. In: Second
Workshop on Principles and Practice of Constraint Programming, 1994.

[Smo9%4] G. Smolka. A foundation forhigher - order concurrent constraint programming. /n Leciure Notes in
Computer Science, vol. 845, pp. 50-72. Minchen, Sept 1994. Springer-Verlag.

[Smo094] G. Smolka. The definition of Kernel Oz. In: DFKI Oz documentation series, 1994,

[Sco95] 3. Steinman and K. G. Carver. Visual Programming with Prograph CP2. 1995

[Vas94] V. Vasconcelos. Typed concurrent objects. In M. Tokoro and R. Pareschi, editors, Proceedings of
8th European Conference on Object-Oriented Programning (ECOOP'94).

[VDRO9T] F. Valencia, J. F. Diaz, and C. Rueda. The n'-calculus: Uses and Behavioral Equivalence.

Submitted to DSL97, Santa Barbara, Calif.,1997.

652

